Balance and Ballast Water
By Patrick Murphy/ Fraser High School/ patrick.murphy@fraser.misd.net

Topic: How The Great Lakes Maritime Industry can teach about differentiation of objects, properties of matter and motion of objects.

Target Grade - Secondary Special Education Science Class.

Lesson Overview - The shipping industry uses ballast water to keep the boats buoyant and balanced depending of the cargo the boat is carrying. By exploring how boats remain balanced and floats student will achieve an understanding of the characteristics of the states of solids and liquids, and buoyancy.

Objectives – At the end of the lesson the students will be able to:
1) Explain why ships made of solid metal can float on liquid water,
2) know that Archimedes Principle explains this,
3) apply why this is useful knowledge (Shipping industry, or personal reasons such as a fishing boat).

State/National Standards Addressed -
Extended Grade Level Content Expectations and Benchmarks - Science
 Strand: Using Physical Science Knowledge (P)
 Standard: Matter and Energy (ME)
 P.ME.P.EB.IV.1.m.2ADDh
 Differentiate between common objects according to weight, length, or temperature.
 Key concepts: Useful properties—waterproof, lightweight, temperature, lengths, size.
 Real-world contexts: Raincoat, rubber boots, flotation device, heading pad, cooking and food preparation (pan is hot), indicating texture/temperature preference.

 P.ME.FI.EB.IV.1.m.4ADDh
 Describe the arrangement and motion of molecules in solids, liquids, and gases.
 Key concepts: Arrangement—regular pattern, random. Distance between molecules—closely packed, separated. Molecular motion—vibrating, bumping together, moving freely.
 Real-world contexts: Common solids vs. liquids, such as in cooking—boiling water, freezing materials; expansions—roads, bridges.

Extended Grade Level Content Expectations and Benchmarks - English Language Arts
 Strand 1: Writing, Speaking, and Expressing
 EHSCE.SI.1.1.4a
 Write or scribe a complete sentence to express ideas (e.g., describe an event or object).

Michigan Curriculum Frameworks
 Science
 Strand IV: Using Physical Science
 Standard 3: Motion of Objects
 IV.3
 Explain how forces are needed to speed up, slow down, stop or change
direction of a moving object.
Key Concept: Buoyancy

List of Needed Materials – Text book; pencils; paper; clear plastic container filled with water; piece of wood, metal, rock; sculpting clay, and marbles.

Room Arrangement – The room is arranged in “Horse Shoe,” so all seats look up to the front of the room. There are two tables in the front that can be used to hold supplies and to show demonstrations.

New Vocabulary –

Buoyant force/Buoyancy: The ability of liquid or gas to push up on an object that is in the liquid or gas.

Ballast: Any heavy material carried temporarily or permanently in a vessel to provide desired draft and stability.

Ballast water: Water used to balance a ship.

Displacement: When water goes higher when something is placed in it.

Archimedes Principle: The law that a body immersed in a fluid is buoyed up by a force (buoyant force) equal to the weight of the fluid displaced by the body.

Cargo: What the ship is carrying.

Background Information – The Glencoe Physical Science textbook, pages 224-227, 234-235 supported information on this topic. Information was also obtained from Simple Machines, Matter, and Motion student workbooks pages 3-15. Information about ballast water and Great Lakes shipping was gained from the presentation Exotics and Ballast Water by Dale Bergeron and Doug Jensen through the Minnesota Sea Grant on July 30, 2007.

Pre-Assessments – Ask questions about which of the following materials: piece of wood, metal, or rock will float in water. Have class come up with answers why. Review concept of density.

Focus Questions – Why do some objects float? Why do some objects sink? How can things made out of metal float? What is balance? How does balance affect a floating object?

Attention Getter – The educator will drop each of the following objects into the water. The students will have to guess which objects will float and which ones will not.

Describe Classroom Activity – After the attention getter the teacher will have a pair of students try to sculpt a rough boat shape from the sinking clay lump that will float. After the boat floats, the class will load the boat with marbles on one side. After the boat sinks, the student will balance the boat with water (The educator will assist in forming two simple compartments in the clay boat).
Assessment – The class will complete a lab report after finishing the activity. The next class period, after a short review, the class will take a short quiz on the previous day’s activity.

Extensions/Enhancements – A way to enhance this lesson would be to see some sort of shipping or large boat actually on the water. Students could bring in pictures from a cruise vacation to show the class the ship. The photographs from the Great Lakes Maritime Transportation Summer Institute can also be used to illustrate the immense size of these vessels that float on the water.

Resources -

BOUYANCY AND BOATS LAB

Materials:
Clear plastic container Piece of wood Metal Rock
Sculpting clay Marbles Metal bowl

Directions:
Experiment to see which of the above materials will float. Sculpt a boat shape out of clay that will float in water. Load your boat with marbles. Use the idea of ballast water to balance boat.

Questions:
1. What materials floated? __

2. How did you get clay to float? __

3. What property of water let the objects float? _________________________________

4. What is the scientific law that explains this? ________________
Properties of Liquid Quiz

Multiple Choice:

1. A state of matter that has buoyancy is?
 - A. Solid
 - B. Plasma
 - c. Liquid

2. Things that are less dense than water will easily_________________
 - A. Float
 - B. Dissolve
 - C. Sink

3. When water moves when stuff is in it it is called this.
 - A. Movement
 - B. Splash
 - C. Displacement

4. When the shape of a metal is hollow and able to displace a lot of water it will______.
 - A. Still sink
 - B. Float
 - C. Turn upside-down

5. The reason ships float is called this.
 - A. Newton’s Rule
 - B. Archimedes Principle
 - c. Socrates Oath

Short Answer:

In a complete sentence, write how you made the clay float in the boat lab, and why it worked. What was your cargo and ballast?

__
__
__

Developed by Participants in the 2007 Great Lakes Maritime Transportation Summer Teacher Institute sponsored by the Great Lakes Maritime Research Institute (www.glmri.org)