TOPIC: Convert Decimal Degrees into Degrees, Minutes, Seconds

Teacher: Mrs. Jose

<table>
<thead>
<tr>
<th>Instructional Objective</th>
<th>At the end of the session, the students will be able to use conversion of units to write Decimal Degrees into Degrees, Minutes, Seconds form, and vice versa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Calculator</td>
</tr>
<tr>
<td>Strategies</td>
<td>Cooperative Learning – Pair-Share</td>
</tr>
<tr>
<td>Prerequisite</td>
<td>Point plotting on a coordinate grid</td>
</tr>
<tr>
<td>The DRILL/ Warm-Up 5%</td>
<td>There are _______ minutes in 1 hour. There are _______ minutes in 45 seconds. There are _______ hours in 20 minutes.</td>
</tr>
<tr>
<td>The LAUNCH 15%</td>
<td>How will you convert decimal degrees into degrees/minutes/seconds form, and vice versa?</td>
</tr>
<tr>
<td>Mini-Lesson/ Engagement/ Exploration</td>
<td>In a complete circle, there are 360°. Each degree is made up of 60 minutes. Each minute is made up of 60 seconds.</td>
</tr>
</tbody>
</table>
| | **Example 1:** Convert 135.121° N into degrees/minutes/seconds form:
| | 1. Keep the whole units of degrees the same.
| | 2. Multiply the decimal 0.121 by 60 (i.e. 0.121 x 60 = 7.26)
| | 3. The whole number becomes the minutes (7')
| | 4. Take the remaining decimal and multiply by 60 (i.e. 0.26 x 60 = 15.6)
| | 5. The result is the seconds (15.6”). Seconds may be whole or remain as decimal #s)
| | 6. Take the 3 sets of numbers and put them together (i.e. 135° 7’ 15.6” N)
| | **Guided Practice:** Convert the following into degrees/minutes/seconds form:
| | a. 77.745° W
| | b. 38.675° N
| **The WORK SESSION 60% (individual, partner, small group)** | Students will work in pairs to convert decimal degrees into degrees/minutes/seconds form, and vice versa.
| | Convert the following into degrees/minutes/seconds form:
| | a. 80.2525° W
| | b. 45.1375° S
| | c. 31.7535° E
| | d. 78.2863° N
| | e. 169.1357° W
| | f. 72.8642° N
| | **Example 2:** Convert 75° 15’ 45” W into decimal degree form:
| | 1. Keep the degree unit the same.
| | 2. Divide the seconds number by 60 (i.e. 45 ÷ 60 = 0.75)
| | 3. Take the minutes number and add the decimal (i.e. 15.75)
| | 4. Divide the minute decimal by 60 (15.75 ÷ 60 = 0.2625)
| | 5. The result is the decimal degree (i.e. 0.2625°)
| | 6. Take the whole unit degree and add the decimal degree (i.e. 75.2625°)
| | **Guided Practice:** Convert the following into decimal degrees form:
| | a. 120° 55’ 25” E
| | b. 9° 36’ 24” N |
| **The SUMMARY 20%** | How did you and your partner work on converting decimal degrees into degrees/minutes/seconds form, and vice versa? How did you check each other’s work? |
| **Accommodation** | A strong student will be paired with a special need student, or 2 regular students paired together. |
| **Assessment** | Written work of students on the activity, to be discussed as a class, for immediate feedback. |